Redundancy-Related Bounds on Generalized Huffman Codes

نویسنده

  • Michael B. Baer
چکیده

This paper presents new lower and upper bounds for the compression rate of optimal binary prefix codes on memoryless sources according to various nonlinear codeword length objectives. Like the most well-known redundancy bounds for minimum (arithmetic) average redundancy coding — Huffman coding — these are in terms of a form of entropy and/or the probability of the most probable input symbol. The bounds here improve on known bounds of the form L ∈ [H,H + 1), where H is some form of entropy in bits (or, in the case of redundancy measurements, 0) and L is the length objective, also in bits. The objectives explored here include exponential-average length, maximum pointwise redundancy, and exponentialaverage pointwise redundancy (also called dth exponential redundancy). These relate to queueing and single-shot communications, Shannon coding and universal modeling (worst-case minimax redundancy), and bridging the maximum pointwise redundancy problem with Huffman coding, respectively. A generalized form of Huffman coding known to find optimal codes for these objectives helps yield these bounds, some of which are tight. Related properties to such bounds, also explored here, are the necessary and sufficient conditions for the shortest codeword being a specific length.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bounds on Generalized Huffman Codes

New lower and upper bounds are obtained for the compression of optimal binary prefix codes according to various nonlinear codeword length objectives. Like the coding bounds for Huffman coding — which concern the traditional linear code objective of minimizing average codeword length — these are in terms of a form of entropy and the probability of the most probable input symbol. As in Huffman co...

متن کامل

The Rényi redundancy of generalized Huffman codes

If optimality is measured by average codeword length, Huffman's algorithm gives optimal codes, and the redundancy can be measured as the difference between the average codeword length and Shannon's entropy. If the objective function is replaced by an exponentially weighted average, then a simple modification of Huffman's algorithm gives optimal codes. The redundancy can now be measured as the d...

متن کامل

A simple upper bound on the redundancy of Huffman codes

Upper bounds on the redundancy of Huffman codes have been extensively studied in the literature. Almost all of these bounds are in terms of the probability of either the most likely or the least likely source symbol. In this correspondence, we prove a simple upper bound in terms of the probability of any source symbol.

متن کامل

On the Redundancy of Optimum Fixed-to-Variable Length Codes

There has been much interest in recent years in bounds on the redundancy of Huffman codes, given only partial information about the source word distribution, such as the probability of the most likely source. This work determines upper and lower bounds for the redundancy of Huffman codes of source words which are binomially distributed. Since the complete distribution is known, it is possible t...

متن کامل

Tight Bounds on the Average Length, Entropy, and Redundancy of Anti-Uniform Huffman Codes

In this paper we consider the class of anti-uniform Huffman codes and derive tight lower and upper bounds on the average length, entropy, and redundancy of such codes in terms of the alphabet size of the source. The Fibonacci distributions are introduced which play a fundamental role in AUH codes. It is shown that such distributions maximize the average length and the entropy of the code for a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007